Comprehensive Numerical Analysis of Finite Difference Time Domain Methods for Improving Optical Waveguide Sensor Accuracy
نویسندگان
چکیده
This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.
منابع مشابه
Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures
Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...
متن کاملNumerical Analysis of Mushroom-type Traveling Wave Electroabsorption Modulators Using Full-Vectorial Finite Difference Method
Larger width of P-cladding layer in p-i-n waveguide of traveling wave electroabsorption modulator (TWEAM) results in lower resistance and microwave propagation loss which provides an enhanced high speed electro-optical response. In this paper, a fullvectorial finite-difference-based optical mode solver is presented to analyze mushroom-type TWEAM for the first time. In this analysis, the discont...
متن کاملBand Structures for 2D Photonic Crystals in Presence of Nonlinear Kerr Effect Calculated by Use of Nonlinear Finite Difference Time Domain (NFDTD) Method
We report the simulation results for impact of nonlinear Kerr effect on band structures of a two dimensional photonic crystal (2D-PhC) with no defect, a PhC based W1-waveguide (W1W), and also Coupled-Cavity Waveguides (CCWs). All PhC structres are assumed to a square lattice of constant a made of GaAs rods of radius r=0.2a, in an air background. The numerical simulation was performed using...
متن کاملNumerical Assessment of Finite Difference Time Domain (FDTD) and Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain (CE-ADI-FDTD) Methods
A thorough numerical assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain Methods has been carried out based on a basic single mode Plane Optical Waveguide structure. Simulation parameters for both methods were varied and the impact on the performance of both numerical methods is investigated.
متن کاملHigh-Density Integrated Optics
This paper presents two-dimensional (2-D) finite difference time domain (FDTD) simulations of low-loss rightangle waveguide bends, T-junctions and crossings, based on high index-contrast waveguides. Such structures are essential for the dense integration of optical components. Excellent performance characteristics are obtained by designing the waveguide intersection regions as low-Q resonant ca...
متن کامل